Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 129-134, 2014.
Article in English | WPRIM | ID: wpr-727685

ABSTRACT

It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin (BH4) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of BH4 into neuron would induce the neuronal toxicity in vitro. To elucidate a role of BH4 in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and BH4 at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and BH4 levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of BH4 was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of BH4 in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both BH4 and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of BH4 can deteriorate the disease progression in early phase of PD, and the inhibition of BH4 increase could be a strategy for PD treatment.


Subject(s)
Disease Progression , Dopamine , Dopaminergic Neurons , Ions , Iron , Models, Animal , Neurons , Oxidative Stress , Parkinson Disease , RNA, Messenger
2.
Journal of the Korean Child Neurology Society ; : 99-104, 2004.
Article in Korean | WPRIM | ID: wpr-207296

ABSTRACT

Segawa disease, hereditary progressive dystonia with marked diurnal fluctuations or defined dopa-responsive dystonia has age-dependent clinical courses, which are characterized with marked progression in the first one and half decades, its subsiding in the third decade and almost stationary courses after the fourth decade. Also, it has characteristic diurnally fluctuating symptoms, aggravated towards the evening and alleviated after sleep. This autosomally dominantly inherited dystonia is caused by abnormalities of the gene of GTP cyclohydrolase I. The heterozygotic gene's abnormality induces partial decrement of tetrahydrobiopterin and affects synthesis of tyrosine hydroxylase(TH) rather selectively. The reduction of TH induces decrement of dopamine and disfacilitates the D1 receptor-striatal direct pathway. The pathognomonic finding in biochemical examination is the decrease of neopterin in the cerebrospinal fluid(CSF). Levodopa, by replacing dopamine contents at the terminal, alleviates motor symptoms completely and the effects sustain without any side effects. We experienced a girl diagnosed as Segawa disease with typical clinical courses and a decrease of neopterin in the CSF.


Subject(s)
Female , Humans , Dopamine , Dystonia , Genetic Diseases, Inborn , GTP Cyclohydrolase , Levodopa , Neopterin , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL